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DYN~ICS OF A SOLID WITH AN ELLIPSOIDAL CAVITY FILLED WITH A KINETIC FLUID* 

0.1. BOGOIAVLENSKII 

Equations of motion are derived for a solid with an ellipsoidal cavity filled with 
a perfect incompressible magnetic fluid. Four first integrals of these equations 
are shown, their Hamiltonian structure studied and the integrable cases found. A 
motion of a solid with an ellipsoidal cavity in which the fluid executes a homogene- 
ous vortex motion, was first studied by Lamb, and equations of motions were first 
derived by Zhukovskii and later by Poinca&, using the group variables. The dynamics 
of a solid with a cavity filled with magnetic fluid is of interest in connnection 
with the astrophysical problems arising in the theory of neutron stars and pulsars 

il./. 

1. Forznulation of the problem. Boundary conditions. The dynamicsof a perfect- 
ly rigid body with an ellipsoidal cavity filled with magnetic fluid, is studied under the 
following assumptions. The motion of the fluid in the cavity is described by the equations 
of magnetic hydrodynamics /2,3/ 

p dvidt = --grad p -C (rot H x H)/41t 

div Y = 0, 0H/& = rot (V x H), div H = 0 

(1.1) 

where p = cot1st is the fluid density, v is the velocity vector, pis pressure, and His the 
magnetic field intensity vector. The dynamics of the system is studied, as in the classical 
problem /4/, over the time interval in which the influence of the viscosity of the fluid and 
its friction against the boundary of the cavity can both be disregarded. We choose a refer- 
ence system S rigidly attached to the solid, with the origin at the center of mass and the 
axes parallel to the principal axes of the ellipsoid. In the system S the center 0 of the 
ellipsoid has the coordinates rl, rp. r3. 

The motion of the fluid in the cavity belongs to the class of motions with homogeneous 
deformation, which were first studied in magnetic hydrodynamics in IS/. The transformation 
from the Lagrangian a" to Eulerian x' coordinates has the form 

.r' = F,' (t) ah' + (&)l r’, F = QIDQ,, D = diag (d,, d2, d3) (1.2) 

where q1 and &are orthogonal matrices, d,, d2, d, are the ellipsoid semiaxes, and the 
Lagrangian coordinates a” pass through the unit sphere (al)" + (az)* +(&)",C 1. The repeated 
indices denote summation everywhere. The magnetic field intensity with components Hi inthe 
cavity, has the form 

Hi = F,i~~ji;nj (1.3) 

at the point (1.2), where 11 AjkI) is a constant, skew symmetric matrix. 
Tne electromagnetic field has a discontinuity at the surface of the ellipsoid. Outside 

the ellipsoid the electromagnetic field is absent, since the internal electromagnetic field 
is fully screened by the surface current and surface charge. We shall. show that all necessary 
boundary conditions hold at the discontinuity. Let H,, H,, &, E,, Us,, vv be the normal and 
tangential components of the magnetic field, electric field and velocity of the fluid at the 
ellipsoid surface. The conditions at the discontinuity have the following form in themagnetic 
hydrodynamics /2,3/ (heat conductivity is neglected) 

&)=O, [E,)=4nQ, @,I = 0, {H,) = 4mz-1 (i x n) (1.4) 

{PV,) = 0: {sn - (P.v)*n -t- pu, (E + d/2)) = 0 (1.5) 
@z;l - P.n- T*n) = 0 (1.6) 

s=c(E X H)/(lirc), Pij=-p6ij, T+j = (h?Hj - Ha&ij/2)/{~) 
Here 8 is the surface chaxge, i is the surface current,nis the vector normal to the surface 
of the discontinuity,~ is the electromagnetic energy flux density vector, P and T are matric- 
es with components Pij and ?'I], and s is the density of internal energy of the fluid. 
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By virtue of (1.2) and (1.3) we have Un = 0, H,, = 0. Within the approximation of the 
magnetic hydrodynamics E = (v x H)/c, therefore E, = 0. Consequently the condition (1.31 
hold and determine the surface current and the surface charge. 
virtue of VR = 

{p + Hz/&) = :; sn ’ ” 

The conditions (1.5) hold by 
Conditions (1.6) lead, by virtue of ~;n = 0, H, = 0, to condition 

whrch determines the pressure from the side of the elastic shell, since ir 
is assumed that H= 0 outside the cavity and therefore it also holds in the case of a per- 
fectly rigid body. 

2. Equations of motion. The equations of magnetic hydrodynamics (1.1) and law of 
conservation of total mommentum of impulse together constitute the equations of motion of a 
solid with a cavity. Let us introduce the notation 

Q; = Q,A, Qz' = --BQ, (2.1) 

and use the known property of isomorphism of the vectors with components v' in R8 and skew 
symmetric (3 x 3) -matrices with components Vj,: 

ui --t vj, = --$Eijk !2.2) 

under which the vector product x x y becomes a commutator of the matrices [X, Y] = XI'- 1-S. 
After this isomorphism, the vectors with components Ai, B', i = f,2,3 correspond to the skew 
symmetric matrices 

The moment of 
form (the integral 

A and B. 
impulse Of the fluid within the cavity (relative to the point 0) has the 
is taken everywhere over the volume of the cavity) 

MO' =P{( x x v)‘dx’dx= dxs = - + ~~~~~~~~~ (Ql)j’ ZybA”’ 

M = m, (F’F’ - FF”) = mlQl (D2A + ADZ - WBD) Qz 

Zjk” = m ((r’)%jk - rjr”‘), m = 4nd,d,dJ3, m, = ml5 

where m is the total mass of the fluid, index t denotes transposition and IV], are components 
of the matrix M. The vector a =m,M of total moment of impulse of the body and the fluid 
has the following components in the reference system S: 

Mi = IikAk - 2Bididk, i, j, k = 1, 2, 3 (2.3) 

Ii, = bitJk f f&m;’ + zjkm;‘, bi e dj2 + dk2 

where Zik'is the inertia tensor of the solid in the system S. The law of Conservation of 
total momentum of impulse has the form 

M'=MxA (2.4) 

The last three equations of magnetic hydrodynamics (1.1) hold identically by virtue of 
the definitions (1.2) and (1.3). Passing to the problem of transforming the first equation 
of (1.1) we note, that in case of the motions with homogeneous deformation the pressure p is 
a quadratic function of the coordinates 

P = PO (d t Pij (t) UiUj + Pi (t) Ui 
where pii are components of symmetric matrix P,(t). Substituting 

pressure and the formulas (1.2) and (1.3) into the first equation of 
equation is equivalent to the following matrix and vector equation: 

pF” = -(F-l)’ P, + ((F-1)’ hF’Fh + Fh2)/(4n) 
Pi(t) = -Fi”(Qi)rkr’ 

the above expression for 
(l.l), we find that the 

(2.5) 

Let us write K, = F” F - F'F'. Clearly Ko’ = F”‘F - F’F” represents the antisymmetric part of 

the matrix F’F”. The symmetric part of this matrix defines the matrix P,(t) 
. 

2Z'" = - (1 (F'F" + rLF) + (2n)-lhFfFh + (4n)-’ (F’Fh2 $ h*F’F) 

By virtue of (2.5) we have 

pK,’ = (41-c)-’ (h*F’F - F’Fh2) 

Using the definition (2.1) we obtain 

(2.6) 

(2.7) 

K, = Q;KQ,,K = D2B +BD= - 2DAD,F'F = Q;DIQ, (2.8) 

Using the above formulas we transform the equation (2.7) to the equivalent form 

K’ = [K, Bl + x [Q&*Q,‘, D21, x = (4np)-’ (2.9) 

where the square brackets denote the commutator of the matrices. Writing u =QzILQ1', and using 
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(2.1) we obtain 

u*= [u,B], [u2,P1 = Iu, UP + 02ul (2.10) 

After the isomorphism (2.2), the vector u with components u',u2,us; corresponds to the skew 
symmetric matrix u and vectors K and w with components 

K' = biBi - BA'd,&, w' = biui, i, j, k = 1, 2, 3 (2.11) 

correspond to the matrices K and uD2 +D2u (In the last expression summation over i is omit- 

ted). Using vector notations (2.3) and (2.11) we find that the equations (2.4), (2.9) and 
(2.10) define a complete system of equations describing the dynamics of a solid with an el- 
llpsoidal cavity filled with magnetic fluid 

M’=M x A, K’=KxB+xuxw, u’=uxB (2.12) 

Equations (2.12) determine fully the dependence of the matrix F on time, therefore the equa- 
tion (2.6~ and second equation of (2.5) enable us to find the matrix P,(t) and the coeffic- 
ients IJi (t). i.e. to compute the pressure within the fluid (with the accuracy of up to the 
nonessential addition constant). Equations (2.12) represent a generalization of the classical 
equations of motion of a body with an ellipsoidal cavity filled with a perfect incompressible 
fluid, and have been derived here for the first time. The classical case corresponds to the 
absence of magnetic field and is obtained from (2.12) by setting u = 0. 

3. First integrals of the system. Integrable cases. The most important integral 
of the system (2.12) is the total energy integral E, which consists of the kinetic energy 
of the fluid E,, internal magnetic field energy E, and kinetic energy of rotation of the 
solid Es 

E, = 
s 

!t dx’ dx2 dxs = 
2 G ml tr (FF’) + G I&A’A” (3.1) 

E2 = 
s 

g dx’ dx2 dxJ = & tr (h*F’Fh) d, d2 cl3 

EB = ~ I,j’A’A’, E=El+E:+Es 

Using the notation of Sect.2 in the above formulas, we obtain 

2H = 2E/ml= (ItI, A) + (K, B) + x (u, w) = 

I,,A’A’- 4A’B’ dj d, + Li (B’)’ + xbi (u’)’ 

bi = di2 + dk2, i, j, k = 1, 2, 3 

(3.2) 

Clearly M’ = aH/BA’, Ki = BHIdBi, xwi = aH/au’. We can confirm by direct substitution that the 
function J, = H represents the first integral of the system (2.12). The system can also 
have the following three first integrals: 

Jo = pi, nq, Js= (II, II), Jd = (K, u) (3.3) 

Here J, is a square of the total angular momentum, J, is a square of the magnetic field in- 
tensity vector h in Lagrangian coordinates, and J4 is a scalar product of the fluid vorticity 
vector and vector h, all with the accuracy of up to a multiplier. The combined level of 
+&e three integrals (3.3) defines a six-dimensional manifold I"= T(P) x L? represented by 
a product of a bundle tangent to a two-dimensional sphere, and the two-dimensional sphere S2. 

The system (2.12) represents a special case of the Euler equations /6/ on the Lie algebra 
A, the latter being a sum of the Lie algebra of the group E, of motions of the three-dimen- 

sional space and Lie algebra so /3/. It follows therefore that a simplectic structure is 
defined on the manifold T"in the standard manner /6/; the system (2.12) on it is Hamiltonian, 
with the Hamiltonian H. 

In the case of a spherical cavity (d, = d, = d,) the magnetic field does not have any 
effect on the dynamics of the system, and equations (2.12) reduce to the usual Euler equations 
of motion for some effective solid. 
d, = d,. T’ = (0, 0, 9). Iit = 1,6i”, I, z I, t 

In the case of axial symmetry of the solid and cavity 
the equations (2.12) have an additional first integral 

J, = W + KS and invariants relative to the group of simultaneous turns in the planes 
,\I’), (Kl, K’) and (al, II"). 

(Ml, 
Therefore the system (2.12) lies on the combined level of the first 

integrals (3.3) and J, and reduces, after the factorization on the group shown above, to a 
Hamiltonian system on a four-dimensional manifold which is, in general, nonintegrable. 

Let us consider an important case of the zero total angular momentum of the system, J2=: 
0. We assume that the center of mass lies at the center of the ellipsoid (ri =0) and the in- 
ertia tensor of the solid is diagonal Zik' = ZJi,". Then by virtue of (2.3) we have 
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and the system (2.12) becomes 

Ai = 2B’djdki(bi + Iiml-‘) 

-. 
K =itxB+xuxw, u’=u x B, 
B’ = alpIc3Ei, 

Mi = aRjau, (3.4) 
2X = c;‘xa + xb,Q, 

ci = bi - 4dj2dh.* (b; + Jim;‘)-1 

Equations (3.4) are analogous to the classical Kirchhoff equations of motion of a solid with 
three symmetry planes in a perfect incompressible fluid. From the theory of Kirchhoff equa- 
tions /7/ we know that the system (3.4) has, provided that the Klebsch condition 

cl (b2 - b3) + c:! (b, - b,) + cz @, - b2) = 0 

holds, and an additional first integral 

(3.5) 

J= K,z + iTz2 + Xs2 + xcz (bl- b,) u,~ + xcl(bz - b,) llz2 

is therefore fully integrable. 

(3.6) 

We shall show that a two-parameter family of values of inertia tensor Ii of the solid 
exists for any values of the semiaxes of the ellipsoidal cavity d,, d?, d, for which the re- 
lation (3.5) holds, i.e. the dynamic system is integrable at the level J,= 0. Let 
d, > d,; 

d, > 
and introduce the following notation: 

oi = 1 + Iiml-‘bi-’ > 1, XI = d,da-‘y ~1 = d,d,-', ~2 < x1 < 1 (3.7) 

a, = 2x2 (1 + xl”)-‘, a2 = 2Sl(l + 222)-l, a3 = 2x1x* (x,2 + x&-’ 

From (3.4) we obtain ci = bt (1 - a~"&-'). After substituting (3.7) into (3.5) and transforming, 
we obtain 

(3.8) 

From (3.8) with O<x,<x,< i and two arbitrary parameters fi2, p3> 0 we find, that &> 0. 
Solutions of (3.8) admit the transformation @i-t_Lfii, therefore at sufficiently large L we 
obtain a two-parameter family of solutions with fii = Lpi> 1. Next we find from (3.7) the 
corresponding components of the inertia tensor Ii of the solid. In particular, (3.8) has 
solutions for which x1 =:x1 z 1 and fJ1 ;I:& z-z. In this case the necessary conditions Ii < 
Ij + I,. also hold for large L. 

The known integrable S.A. Chaplygin case for the Kirchhoff equations also leads to an 
integrable case of the system under consideration. Equations (3.4) with conditions 

cl = c2 = 2~3, b, = (bt + b&2, J, = 0 (3.9) 

have an additional first integral 

Js = ((Kz2 - Kl*) c;' + x (dl* - dl*) u3*)* + 4c;‘K12K12 

and are therefore fully integrable. Substituting the expressions (3.4) and (3.7) we can show 
that (3.9) have a three-parameter family of solutions di, Zk satisfying the necessary condi- 
tions. 

4. Astrophysical applications. The class of solutions constructed here models the 
dynamics of rotation of such astrophysical objects as neutron stars and pulsars. According 
to modem ideas /l/, the neutron stars have a fluid center within a solid shell which is 

strongly conducting and has a strong magnetic field frozen into it. Electromagnetic radia- 

tion emitted by such objects over a long period of time is strictly periodic, therefore the 
problem of existence of periodic solutions (for which the matrices Q1(t).Q,(f) are periodic 
functions of t and have the same period), is of importance. 

It is well known that such solutions correspond to the closed trajectoriesofthesystem 
(2.12) (the converse is not true, since the equations (2.12) describe the variation in the 

physical quantities relative to the reference system S attached to the rotating body). Solu- 
tions which have minimum total energy at the given level of the integrals (3.3), are of 

special importance. Such solutions exist by virtue of the positive definiteness of the 
Hamiltonian Hat every level of the integrals (3.31, and correspond to certain stationary 

points of the system (2.12). The solutions are stable, and by virtue of existence of numer- 
ous mechanisms of the energy loss, rotation of the real objects must tend, with time, namely 
to such solutions. The following conditions hold at the stationary pointsofthesystem (2.12): 

fir' = &A', ui = pB’, Ki = qw’ + pB’ (4.1) 
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Using the formulas (2.3) and (2.11) we obtain three equations for determining the coefficients 
k> P, Y 

(bi (1 - xp*) - y) (bi + IpI-- - h) = 4d$d$ (i, j, k = 1, 2, 3) (4.2) 

By virtue of (2-l), the matrices Q>(t) and Q*(t) in solutions corresponding to the stationary 
points (4.1) and (4.2) (and in particular to the stable points of the minima of H) describe 
periodic rotations with periods T, and T,. If the periods F, and T, are incommensurable, then 
the frozen-in magnetic field Hintensity vector (1.3) will, for every point of the cavity in 
the Eulerian coordinates zi, vary quasiperiodically and fill densely everywhere a two-dimen- 
sional surface obtained by rotating an ellipse about its fixed axis (if this surface has no 
self-intersections, then it is a torus). If the periods TI and T, are commensurable, then 
the solution is strictly periodic and vector Hdescribes a closed (possibly self-intersecting) 
curve. It must be stressed that in the case of fluid rotating as a solid and possessing mini- 
mum energy at the given level of the moment impulse integral, the frozen-in magnetic field 
vector always describes (in Eulerian coordinates) a plane circumference. 

In the case of zero total moment of impulse the equations (2.12) reduce, as was shown 
before, to the Kirchhoff equations. Therefore form the results of /8/ it follows that when 
J,=O, then at every level of the integrals Jr, JI and H= J,>E(Ja,J,) there exist at 

least two closed trajectories of the system (2.12)-(3.4). The case Jl= 0 models thedyn- 
amics of rotation of the neutron stars grown from massive objects with a small momentum. For 
this reason, at the final outcome of their evolution, i.e. when a neutron star is formed, the 
moment of impulse of the shell and the fluid center compensate each other. 
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